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Slower speed and stronger coupling: Adaptive mechanisms of chaos synchronization

Xiao Fan Wang*
Department of Automation, Shanghai Jiaotong University, Shanghai 200030, People’s Republic of China

~Received 31 January 2002; published 12 June 2002!

We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively
reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction
and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled
Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can
achieve synchronization with almost the minimum required coupling-speed ratio.
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The ability of coupled nonlinear oscillators to synchroni
with each other is a basis for the explanation of many p
cesses in nature. Traditionally, synchronization has been
derstood as the ability of coupled periodic oscillators w
different frequencies to switch their behavior from the
gime of independent oscillations to the regime of coopera
oscillations, as the strength of the coupling is increased
recent years, synchronization in coupled chaotic systems
become an important research field with applications
many areas of science and technology@1,2#, such as commu-
nications@3,4#, lasers@5#, and chemical and biological sys
tems @6,7#. It has been shown that two coupled identic
chaotic systems can change their behavior from uncorrel
chaotic oscillations to identical chaotic oscillations, as
coupling strength is increased@1#. However, this result doe
not tell us how the coupling strength is increased as
initially weakly coupled systems evolve into synchroniz
tion.

Recently, Ne´daet al.proposed a new mechanism for se
adaptive synchronization in coupled periodic oscillators@8#.
They investigated the development and dynamics of
rhythmic applause in concert halls. They found that
mechanism lying at the heart of the synchronization proc
is the period doubling of the clapping rhythm which leads
slower clapping modes.

In this Brief Report, we propose a unified mechanism
adaptive synchronization of initially weakly coupled chao
systems. We show that two coupled systems can achieve
chronization by adaptively reducing their speed and/or
hancing the coupling strength. We also provide explicit ad
tive algorithms for speed reduction and coupli
enhancement.

Consider two linearly coupled identical chaotic syste
described by

ẋ~ t !5t~ t !F„x~ t !…1K ~ t !@y~ t !2x~ t !#, ~1!

ẏ~ t !5t~ t !F„y~ t !…1K ~ t !@x~ t !2y~ t !#, ~2!

where x5@x1 ,x2 , . . . ,xn#T, y5@y1 ,y2 , . . . ,yn#TPRn are
the states of the coupled systems.t(t).0 is called thespeed
factor of the coupled systems. The coupling matrixK (t)
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5diag@k1(t),k2(t), . . . ,kn(t)# is assumed to be a diagon
matrix with ki(t)[k(t).0 for a particulari andkj (t)[0 for
j Þ i . This means that systems~1! and ~2! are linearly
coupled through theiri th state variables, andk(t) represents
the coupling strength. We can rewrite systems~1! and~2! as
follows:

ẋ~ t !5t~ t !H F„x~ t !…1
1

t~ t !
K ~ t !@y~ t !2x~ t !#J , ~3!

ẏ~ t !5t~ t !H F„y~ t !…1
1

t~ t !
K ~ t !@x~ t !2y~ t !#J . ~4!

Note that if t(t)[t0.0 andk(t)[k0.0 are two con-
stants, and the (n21)-dimensional subsystem

ẋ j~ t !5 f j„x~ t !…, j 51,2, . . . ,i 21,i 11, . . . ,n ~5!

is asymptotically stable@2#, then there exists a critical valu
k̄.0 such that the two coupled systems~3! and ~4! will
synchronize in the sense thatx(t)2y(t)→0 as t→` when
k0 /t0. k̄. The dynamics of the synchronization statesx(t)
5y(t) is governed by

ẋ~ t !5t0F„x~ t !…, ~6!

which has the same attractor for different nonzero values
t0. However, the value oft0 determines the varying speed o
the synchronization state. The lower the value oft0, the
lower the state varying speed. For example, letF be the
vector of the chaotic Lorenz system@9#. Then Eq.~6! be-
comes

S ẋ1~ t !

ẋ2~ t !

ẋ3~ t !
D 5t0S s~x22x1!

rx12x22x1x3

x1x22bx3

D , ~7!

where we take s510, b58/3, and r 528. For t0
51,0.5,0.2, system~7! has the same chaotic attractor b
different state varying speed, as shown in Fig. 1.

One may view the coupling-speed ratiok/t as the cost of
the coupled systems and the critical valuek̄ as the minimum
cost required to achieve synchronization. If the value ofk̄ is
©2002 The American Physical Society02-1
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known, then one may take a smallert0 and/or a largerk0 so
as to guaranteek0 /t0. k̄. However, to find the critical value
k̄ at the beginning, the complete model of the coupled s
tems and perhaps the exact initial conditions must be kno
Thus it is interesting to see how two initially weakly couple
systems can adaptively update their varying speed and
pling strength according to measured synchronization e
until synchronization occurs.

Without loss of generality, we assumet051 andk0, k̄.
The adaptive algorithms for the update of speed factor
coupling strength are described by

ṫ~ t !5gt@xi~ t !2yi~ t !#2@t* 2t~ t !#, t~0!5t0 , ~8!

k̇~ t !5gk@xi~ t !2yi~ t !#2@k* 2k~ t !#, k~0!5k0 , ~9!

wheregt andgk are positive adaptive gains.t* .0 andk*
.0 represent the minimum allowed speed factor and m
mum allowed coupling strength, respectively. Therefo
k* /t* represents the maximum allowed coupling-speed r
~cost! of the coupled systems. A necessary condition for s
chronization isk* /t* . k̄.

From Eq. ~8!, t(t) is a decreasing function andt(t)
>t* ; from Eq. ~9!, k(t) is an increasing function andk(t)
<k* . Therefore, there exist two constantst̂ and k̂ such that

lim
t→`

t~ t !5 t̂, t* <t̂<t0 , ~10!

lim
t→`

k~ t !5 k̂, k0< k̂<k* . ~11!

If t̂5t* and k̂5k* , thenk̂/ t̂5k* /t* . k̄, which implies
that the coupled systems will achieve asymptotic synchro

FIG. 1. Trajectories ofx1(t) of system~7! with t51 ~upper!,
0.5 ~middle!, and 0.2~bottom!.
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zation. On the other hand, ift̂Þt* and/ork̂Þk* , then from
Eqs.~8! and ~9! we must have

lim
t→`

@xi~ t !2yi~ t !#50, ~12!

which, together with the stability of the subsystem~5!, im-
plies that the coupled systems~1! and ~2! will also achieve
asymptotic synchronization.

As an example, we consider two coupled Lorenz syste
described by

FIG. 2. Adaptive synchronization of the coupled Lorenz syste
~13!–~16! with g50.2 ~full line! and 0.002~dashed line!.

FIG. 3. Adaptive synchronization of the coupled Lorenz syste
~13!–~16! with g50.000 02.
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S ẋ1

ẋ2

ẋ3

D 5t~ t !S s~x22x1!1k~ t !~y12x1!

rx12x22x1x3

x1x22bx3

D , ~13!

S ẏ1

ẏ2

ẏ3

D 5t~ t !S s~y22y1!1k~ t !~x12y1!

ry12y22y1y3

y1y22by3

D , ~14!

with the following two adaptive algorithms:

ṫ~ t !5gt~x12y1!2@t* 2t~ t !#, ~15!

k̇~ t !5gk~x12y1!2@k* 2k~ t !#. ~16!

In the following simulations, the initial states are taken
x(0)5@10,2,20#T andy(0)5@210,22,0#T. We find through
simulation that the critical value isk̄'3.950. Other param
eters were chosen as follows:t051, k051, t* 50.1, and
k* 515.

We takegt5gk5g. Figures 2 and 3 show the simulatio
results forg50.2, 0.002, and 0.000 02. For large adapt
gaing50.2, t(t) decreases fast tot̂'0.17 which is close to
the minimum allowed valuet* andk(t) increases fast tok̂
'13.82 which is close to the maximum allowed valuek*
~Fig. 2!. In this case, although the time to achieve synch
nization is quite short~Fig. 2!, the costk̂/ t̂'81.29 is much
higher than the minimum required costk̄. On the other hand
for sufficiently small adaptive gaing50.000 02, t(t) de-
creases tot̂50.84 andk(t) increases tok̂53.48 very slowly,
and therefore the time to achieve synchronization is q
long ~Fig. 3!; however, in this case, we find thatk̂/ t̂'4.14
which is very close to the critical valuek̄. This implies that
after a long-time adaptive process the coupled systems
achieve synchronization with almost minimum required co
For the middle adaptive gaing50.002, t(t) decreases fas

FIG. 4. Synchronization of the coupled Lorenz systems~13! and
~14! via adaptive speed-reduction algorithm~15! with gain gt

50.0005.
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to t̂50.78 andk(t) increases fast tok̂54.34. In this case,
the coupled systems can achieve fast synchronization
low cost k̂/ t̂'5.52 ~Fig. 2!.

Now suppose that the coupling strength cannot
changed directly, i.e.,k(t)[k0. We show that the coupled
systems~13! and ~14! can achieve synchronization by ada
tively tuning their speed according to algorithm~15! alone.
In this case, the critical speed factor ist̄5k0 / k̄'0.253. We
find that a large adaptive gain would lead to fast synchro
zation, but at the same time,t̂ is very close to the minimum
allowed valuet* , which implies that the varying speed o
the synchronization state might be too slow to be efficie
For sufficiently small adaptive gaingt , the time to achieve
synchronization may be quite long, butt̂ is very close to the
critical valuet̄, which implies that after a long-time adaptiv
process the coupled systems can achieve synchronization
keep the varying speed of the synchronization state as fa
possible. Figure 4 shows the synchronization process fogt
50.0005.

If the coupled systems~13! and ~14! keep their speed
unchanged, i.e.,t(t)[t051, then they can achieve synchro
nization by adaptively increasing the coupling strength
cording to algorithm~16! alone. In this case, the critical cou
pling strength isk̄'3.950. A sufficiently large adaptive gai
would lead to fast synchronization, butk̂ is very close to the
maximum allowed valuek* , which implies that the coupling
strength might be too strong to be safe. For sufficiently sm
adaptive gaingk , the time to achieve synchronization ma
be quite long, andk̂ is very close to the critical valuek̄,
which implies that after a long-time adaptive process
coupled systems can achieve synchronization and keep
coupling strength as small as possible. Figure 5 shows
synchronization process forgk50.0005.

In summary, we proposed adaptive speed-reduction an
coupling-enhancement algorithms for synchronization in t
initially weakly coupled chaotic systems. We showed tha
the adaptive gains are sufficiently small, then after a lo
time adaptive process, the two coupled chaotic systems

FIG. 5. Synchronization of the coupled Lorenz systems
adaptive coupling-enhancement algorithm~16! with gain gk

50.0005.
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achieve synchronization with almost minimum requir
coupling-speed ratio. Although the speed~time scale! of
many physical systems is givena priori and is not control-
lable, it seems to be quite easy for many biological syste
to adjust the time scales of their dynamical behaviors.
06720
s
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example, it is easy for us to change our clapping speeds,
therefore change the time scales of clapping dynamics
concert halls. Therefore, this work might shed some light
the self-adaptive synchronization processes of biological s
tems.
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