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Slower speed and stronger coupling: Adaptive mechanisms of chaos synchronization
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We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively
reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction
and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled
Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can
achieve synchronization with almost the minimum required coupling-speed ratio.
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The ability of coupled nonlinear oscillators to synchronize =diad k;(t),ka(t), ... ky(t)] is assumed to be a diagonal
with each other is a basis for the explanation of many promatrix withk;(t)=k(t) >0 for a particulai andk;(t)=0 for
cesses in nature. Traditionally, synchronization has been urj+i. This means that systemd) and (2) are linearly
derstood as the ability of coupled periodic oscillators withcoupled through theiith state variables, ark(t) represents
different frequencies to switch their behavior from the re-the coupling strengthWe can rewrite systemd) and(2) as
gime of independent oscillations to the regime of cooperativéollows:
oscillations, as the strength of the coupling is increased. In
recent years, synchronization in coupled chaotic systems has : 1
become an important research field with applications in X(t):T(t)[F(X(t)HWK(t)[y(t)_x(t)])' )
many areas of science and technoldt)?], such as commu-
nications[3,4], lasers[5], and chemical and biological sys- _ 1
tems [6,7]. It has been shown that two coupled identical Y(t):T(t)[F(Y('ﬁ))+ WK(U[X(U—Y(U]]- (4)
chaotic systems can change their behavior from uncorrelated
chaotic oscillations to identical chaotic oscillations, as the Note that if 7(t)=7,>0 andk(t)=k,>0 are two con-
coupling strength is increasé¢d]. However, this result does stants, and then(— 1)-dimensional subsystem
not tell us how the coupling strength is increased as two
|tino|tr|]:.;1IIy weakly coupled systems evolve into synchroniza- x(=fx(t), j=12,...i-1i+1,...n (5

Recently, Nelaet al. proposed a new mechanism for self- js asymptotically stablg2], then there exists a critical value
adaptive synchronization in coupled periodic oscillaj@k k>0 such that the two coupled systert® and (4) will
They investigated the development and dynamics of th ynchronize in the sense theft) — y(t)—0 ast— when

rhythmic applause in concert halls. They found that the — i N
mechanism lying at the heart of the synchronization proces§o/ 70> k. The dynamics of the synchronization statgs)
(t) is governed by

is the period doubling of the clapping rhythm which leads to ™Y
slower clapping modes. .

In this Brief Report, we propose a unified mechanism for X(t)=moF(x(1)), (6)
23;2%5 %gzmrgxlfﬁ ;Ito tr\:vgféggsg g;;g%g Zgﬁlztihﬁgsgt;/w_hich has the same attractor for different nonzero values of
chronization by adaptively reducing their speed and/or en’0: However, the value of, determines the varying speed of

hancing the coupling strength. We also provide explicit adap%he synhchronization ;tate. Thg I'cz)wer the Vlalu;;b@f ﬂ;]e
tive algorithms for speed reduction and coupling'OVer the state varying speed. For example, Hebe the
enhancement. vector of the chaotic Lorenz systef]. Then Eq.(6) be-

Consider two linearly coupled identical chaotic systemsCOmeS
described by

Xl(t) O'(XZ_X]_)
X(t) = () F(X(1) + K (D[ y(t) = x(1)], (1) %o(t) | = 79| TX1—Xa—X1Xs || 7)
. N X1Xo—bX
Y(t)=r(OF (1) + KX —y(b)], ) Xs(t) v
where X=[Xy,Xs, . . . Xn]T y=[Y1,Ya, - . . yn]TE%n are where we take 0=10, b=8/3, and r=28. For 7
the states of the coupled systemg)> 0 is called thespeed =1,0.5,0.2, systeni7) has the same chaotic attractor but

different state varying speed, as shown in Fig. 1.
One may view the coupling-speed rakibr as the cost of

the coupled systems and the critical valuas the minimum
*Electronic address: xfwang@ieee.org cost required to achieve synchronization. If the valué &

factor of the coupled systems. The coupling matHxt)
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FIG. 1. Trajectories ok, (t) of system(7) with 7=1 (uppey, FIG. 2. Adaptive synchronization of the coupled Lorenz systems
0.5 (middle), and 0.2(bottom). (13)—(16) with y=0.2 (full line) and 0.002dashed ling

known, then one may take a smallyand/or a largek, so zation. On the other hand, ## 7 and/ork#k*, then from
as to guaranteb0/70>k However, to find the critical value Egs.(8) and (9) we must have

k at the beginning, the complete model of the coupled sys-

tems and perhaps the exact initial conditions must be known. lim[x;(t)—y;(t)]=0 (12)
Thus it is interesting to see how two initially weakly coupled ! '
systems can adaptively update their varying speed and cou-

pling strength according to measured synchronization error \vhich, together with the stability of the subsystég), im-

unti _synchromzanon occu.rs. _ plies that the coupled systeni¥) and(2) will also achieve
Without loss of generality, we assumg=1 andko<k.  asymptotic synchronization.

The adaptive algorithms for the update of speed factor and ‘ag an example, we consider two coupled Lorenz systems

t—o0

coupling strength are described by described by
)=y IO -y -], 7(0)=r, 1
k()= n{xi() = yi(D12[k* —k(t)], k(0)=ko, (9 C 0o

where vy, and y, are positive adaptive gains* >0 andk*

>0 represent the minimum allowed speed factor and maxi- 0.8

; . 0 200 400 600 800 1000 1200
mum allowed coupling strength, respectively. Therefore,

k*/7* represents the maximum allowed coupling-speed ratio

(cosh of the coupled systems. A necessary condition for syn- 8

chronization isk*/7* >k. 5
From Eq. (8), 7(t) is a decreasing function and(t)

=7*; from Eq.(9), k(t) is an increasing function ark{t) 1

. ~ A 0 200 400 600 800 1000 1200
<k*. Therefore, there exist two constantsindk such that

~ ~ 20

imr(t)=7, *<7<n7g, (10 o

— [ 0
t =

_ . . -20

limk(t)=k, kosk=sk*. (11 . . . . .
t—oo 0 200 400 600 800 1000 1200

t
If 7=7* andk=k*, thenk/7=k*/7* >k, which implies FIG. 3. Adaptive synchronization of the coupled Lorenz systems

that the coupled systems will achieve asymptotic synchroni¢13)—(16) with y=0.000 02.
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FIG. 4. Synchronization of the coupled Lorenz systéir® and FIG. 5. Synchronization of the coupled Lorenz systems via
(14) via adaptive speed-reduction algorithth5) with gain vy, adaptive coupling-enhancement algorith(@6) with gain 7,
=0.0005. =0.0005.
X4 o (Xa—Xq) +K(t) (Y1 —X1) to 7=0.78 andk(t) increases fast th=4.34. In this case,

the coupled systems can achieve fast synchronization with

X [ =m(t) T TXs (19 low costk/7~5.52 (Fig. 2).
X3 X1Xo—bXs Now suppose that the coupling strength cannot be
changed directly, i.ek(t)=Kk,. We show that the coupled
i’l a(Yo—y1) +K(O) (X, — Y1) s_ystems(13) and_(14) can achievg synchroni_zation by adap-
; tively tuning their speed according to algorithit5) alone.
Y2 | =7() Y17Y27Y1¥s @4 | this case, the critical speed factords ko /k~0.253. We
Y3 y1y2—bys find that a large adaptive gain would lead to fast synchroni-
zation, but at the same time,is very close to the minimum
with the following two adaptive algorithms: allowed value7*, which implies that the varying speed of
the synchronization state might be too slow to be efficient.
(t)= (X —y) ™ —7(t)], (15 For sufficiently small adaptive gai., the time to achieve
synchronization may be quite long, btifs very close to the
k()= y(xa—y) [ K* —k(t)]. (16)  critical valuer, which implies that after a long-time adaptive

process the coupled systems can achieve synchronization and
In the following simulations, the initial states are taken askeep the varying speed of the synchronization state as fast as
x(0)=[10,2,29" andy(0)=[—10,~2,0]". We find through  possible. Figure 4 shows the synchronization process for
simulation that the critical value i&~3.950. Other param- =0.0005. _
eters were chosen as follows;=1, k,=1, 7*=0.1, and If the coupled systems13) and (14) keep their speed
k* =15. unchanged, i.ez(t)=19=1, then they can achieve synchro-
We takey,= y,=v. Figures 2 and 3 show the simulation Nization by adaptively increasing the coupling strength ac-
results fory=0.2, 0.002, and 0.00002. For large adaptivecording to algorithn{16) alone. In this case, the critical cou-

gain y=0.2, 7(t) decreases fast ts~0.17 which is close to  pling strength isk~3.950. A sufficiently large adaptive gain

the minimum allowed value* andk(t) increases fast t&  would lead to fast synchronization, bkiiis very close to the
~13.82 which is close to the maximum allowed vakie ~ maximum allowed valu&* , which implies that the coupling
(Fig. 2. In this case, although the time to achieve synchro-strength might be too strong to be safe. For sufficiently small
nization is quite shortFig. 2), the costk/7~81.29 is much 2daptive gainyy, the time to achieve synchronization may

higher than the minimum required cdstOn the other hand, be.quit'e Io'ng, andk is very closg to the critical valug,
for sufficiently small adaptive gairy=0.00002, (t) de-  Which implies that after a long-time adaptive process the
creases 16— 0.84 andk(t) increases t&=3.48 very slowly, coupled systems can achieve synchronization and keep the

. . A .. coupling strength as small as possible. Figure 5 shows the
and therefore the time to achieve synchronization is qu'teSynchronization process fof=0.0005

long (Fig. 3); however, in this case, we find thiatr~4.14 In summary, we proposed adaptive speed-reduction and/or
which is very close to the critical valde This implies that  coupling-enhancement algorithms for synchronization in two
after a long-time adaptive process the coupled systems canitially weakly coupled chaotic systems. We showed that if
achieve synchronization with almost minimum required costthe adaptive gains are sufficiently small, then after a long-
For the middle adaptive gaigp=0.002, 7(t) decreases fast time adaptive process, the two coupled chaotic systems can
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achieve synchronization with almost minimum requiredexample, it is easy for us to change our clapping speeds, and

coupling-speed ratio. Although the speéime scalg of

many physical systems is givenpriori and is not control-

therefore change the time scales of clapping dynamics in
concert halls. Therefore, this work might shed some light on

lable, it seems to be quite easy for many biological systemshe self-adaptive synchronization processes of biological sys-
to adjust the time scales of their dynamical behaviors. Fotems.
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